

Expansion of GO-FLOW for dynamic and Living PSA applications

Presenter: Zhanyu He

Email : 1123962375@qq.com

School : South China University of Technology

CONTENTS CONTENTS

GO-FLOW Methodology

- 2 Automatic Modeling
- **3 GO-FLOW Modeling Platform for Living PSA Application**
 - Reliability Analysis
- 5 **Conclusions**

4

GO-FLOW Methodology – Basic operator

GO-FLOW methodology is a success-oriented system reliability/availability and safety analysis method for **time-dependent** and **phased-mission** system.

A total of 14 standard GO-FLOW operators are roughly classified into four categories:

• Signal generator

Represent the signal sources

• General functional operators

represent the failure mode of component

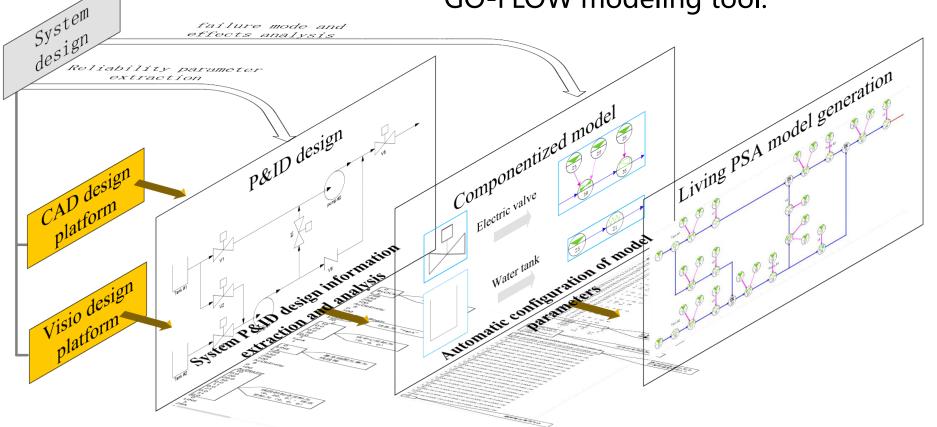
• Logical generators

describe the logical relationship

Case-specific operators

use for specific application solution

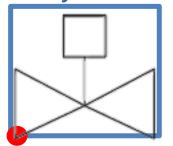
kind	Туре	shape	Name
Signal generator	25	25	Signal generator
	21	21	Two-state Component
	26	26	Normally Closed Component
	27	27	Normally Opened Component
General function operators	35	35	Operating Failure of Component
	37	37	Standby Failure of Component
	38	38	Maintenance of Component
	39	39	Opening and closing action component
	22	OR 22	OR Gate
Logic generators	23	NOT 23	NOT Gate
	30	AND 30	AND Gate
	24	DIF 24	Difference operator
Case-specific operators	28	DLY 28	Delay operator
	40	40	Phased-Mission operator


GO-FLOW Methodology – Componentization model

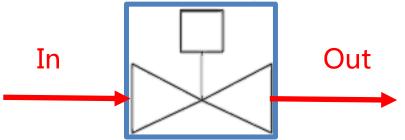
Categories	Sub- categories	Type of component	Failure mode	Reliability parameter	Componentized GO-FLOW model
Non-action	Source component	container	leakage	Probability of Failure on demand $P_{\rm g}$	
component	Non-source	Heat exchanger	Blockage,	Failure rate λ	25
	component	Check valve	leakage	Repair rate μ	
	Normally	Relief valve Safety valve	Leakage, Fail open	Probability of action ahead of time P_p	25
	closed component	Relay	Overload, Wear out	Probability of Failure on demand P_g^{T}	
Action component	Normally open component	Fuse and circuit breaker	Fail closed	Probability of action ahead of time P_p Probability of Failure on demand P_g	25
component		regulating control valve	Failure on demand	Probability of action ahead of time P_p	
	Switching component	pump	Failure of demand, operating failure	Shutdown failure P_c Startup failure P_o Failure rate λ Repair rate μ	25 25 25 39 35

Automatic Modeling – Overview of framework

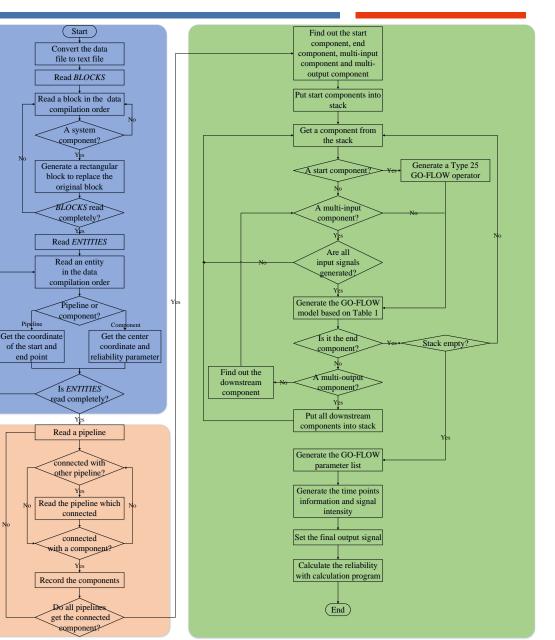
- Avoid human error
- Improve modeling speed
- Map the system model correctly


Based on the similarity of flow connection in both actual physical flows and GO-FLOW signal flows, a 'flow-based' method are used to describe the specifically customized GO-FLOW modeling tool.

Automatic Modeling – Implementation procedure


Automated GO-FLOW modeling process consists of three steps:

1.System P&ID design information extraction and analysis.



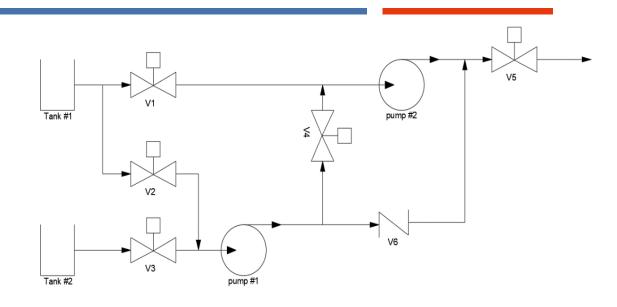
Minimum coordinate (0,0,0) Maximum coordinate (15,20,0)

2.Connection relationship identification.

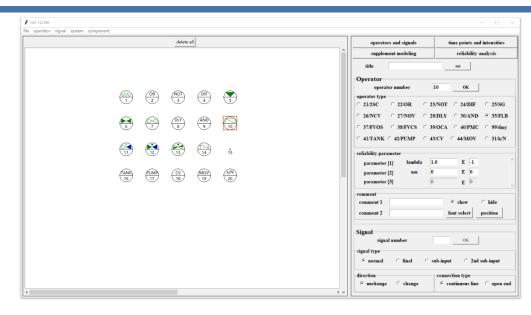
3.GO-FLOW model generation. system structural model generation

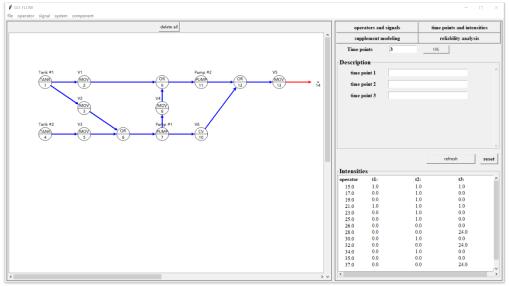
Automatic Modeling – Case demonstration

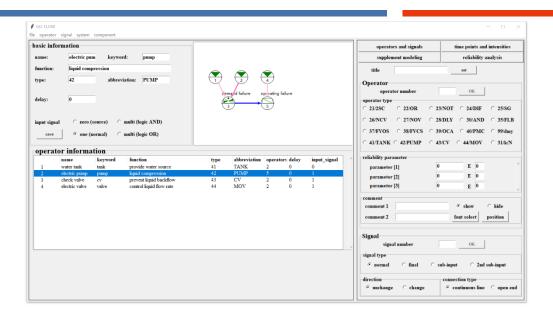
Step 1: information extraction and analysis

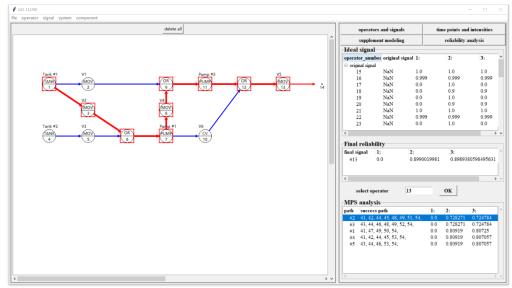

- Water storage tank
- Electric isolation valve
- Water transport pump
- Check valve

Step 2: Connection relationship identification

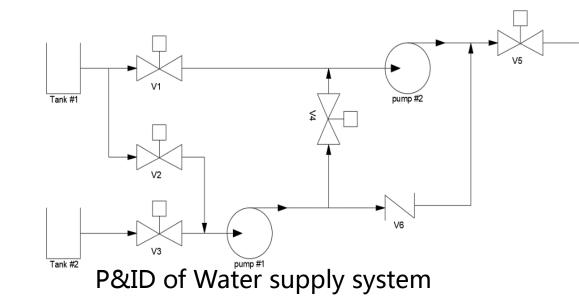

- Multi-input: Pump #1, Pump #2, V5
- Multi-output: Tank #1, Pump #1
- Starting component: Tank #1, Tank #2
- Ending component: V5

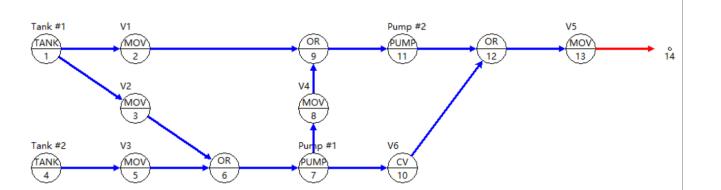

Step 3: GO-FLOW model generation

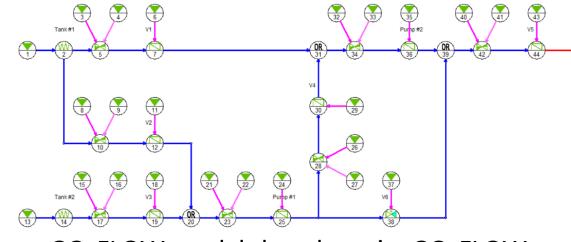

- System structural model generation
- Time series supplement



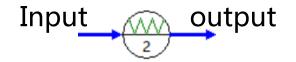
Depth-first traversal algorithm: Tank #1 \rightarrow V1 \rightarrow V2 \rightarrow Tank #2 \rightarrow V3 \rightarrow Pump #1 \rightarrow V4 \rightarrow Pump #2 \rightarrow V6 \rightarrow V5






Ø GO-FLOW		- 🗆 X
file operator signal system component		[
delete all	operators and signals	time points and intensities
	supplement modeling	reliability analysis
Standard GO-FLOW operators	title Operator operator number	set
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	operator type	3/NOT © 24/DIF © 25/SG
$\overbrace{6}^{\bullet} \qquad \overbrace{7}^{\bullet} \qquad \overbrace{8}^{\bullet} \qquad \overbrace{9}^{\bullet} \qquad \overbrace{10}^{\bullet}$	○ 37/FVOS ○ 38/FVCS ○ 3	8/DLY © 30/AND © 35/FLB 9/OCA © 40/PMC © 99/dmy
	reliability parameter	3/CV C 44/MOV C 31/k/N
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	parameter [1] mu 0 parameter [3] 0	E 0
Componentized operators	comment 1 comment 2	• show font select
	Signal signal number ⊂signal type ⊙normal ⊂final ⊂s	OK sub-input O 2nd sub-input
	direction ଙunchange C change	connection type © continuous line © open end

🦸 go-Fl	OW								- 🗆 ×
file oper	ator signal system	component							
-basic	information							operators and signals	time points and intensities
name:	electric pu	m keywe	ord: pump	Def	ault rol	iability	parameter	supplement modeling	reliability analysis
function	on: liquid com	pression						title	set
type:	42	abbre	viation: PUMP						
						Ý		Operator operator number	OK
delay:	0	_			•	perating failure		operator type	
		ogical	options		3	5		1	23/NOT 24/DIF 25/SG
								○ 26/NCV ○ 27/NOV ○	28/DLY 30/AND 35/FLB
input	signal C zero (ັ multi (logic AND)						○ 39/OCA ○ 40/PMC ○ 99/dmy
s	one (normal) 🤇) multi (logic OR)						-
	rator informa	tion						○ 41/TANK ○ 42/PUMP ○	○ 43/CV ○ 44/MOV ○ 31/k/N
ope	name	keyword	function	type	abbreviation	operators delay	input_signal ^	-reliability parameter	
1	water tank	tank	provide water source	41	TANK	2 0	0	parameter [1]	0 E 0
2	electric pump check valve	pump cv	liquid compression prevent liquid backflow	42 43	PUMP CV	5 0 2 0	1	parameter [2]	0 E 0
4	electric valve	valve	control liquid flow rate	44	MOV	2 0	1	parameter [3]	0 E 0
								comment	
								comment 1	• show Chide
								comment 2	font select position
								Signal	
							~	signal number	OK
								-signal type	
								• normal • final	🔿 sub-input 🔿 2nd sub-input
								direction	connection type
								• unchange C change	• continuous line • open end


GO-FLOW model draw by new platform

GO-FLOW model draw by exist GO-FLOW

- GO-FLOW platform provides a clearer model with the help of componentized operators.
- Users do not need to pay attention to the failure mode of the components.

	delete all				ators and signals	time	e points and inten	sities
			<i>'</i>	supp	lement modeling		reliability analysi	s
				Time po	ints 3	OK	Σ.	
				Descripti	on			
Tank #1 V1		Pump #2	V5					
	OR	PUMP OR	MOV	time p	omt 1			
	9	11 12	13 14	time p	oint 2			
	Ť	- /-	-	time p	oint 3			
V2								
MOV								
\sim	Ť							
Tank #2 V3	Purnp #1	V6						
TANK MOV OI	R PUMP	(cv)						
4 5 6								
				all so	ource in	tensitv	refresh	re
				all sc	ource in	tensity	refresh	re
						tensity	refresh	re
				-Intensitie operator 15.0	tl: 1.0	t2: 1.0	t3: 1.0	re
				-Intensitie operator 15.0 17.0	tl: 1.0 0.0	t2: 1.0 1.0	t3: 1.0 0.0	re
				-Intensitie operator 15.0 17.0 19.0	t1: 1.0 0.0 0.0	t2: 1.0 1.0 1.0	t3: 1.0 0.0 0.0	re
				Intensitie operator 15.0 17.0 19.0 21.0	t1: 1.0 0.0 0.0 1.0	t2: 1.0 1.0 1.0 1.0	t3: 1.0 0.0 0.0 1.0	re
				Intensitie operator 15.0 17.0 19.0 21.0 23.0 25.0	tl: 1.0 0.0 0.0 1.0 0.0 0.0 0.0	t2: 1.0 1.0 1.0 1.0 1.0 1.0 1.0	t3: 1.0 0.0 0.0 1.0 0.0 0.0 0.0	re
				► Intensitie operator 15.0 17.0 19.0 21.0 23.0 25.0 26.0	tl: 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0	t2: 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0	t3: 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0	re
				► Intensitie operator 15.0 17.0 19.0 21.0 23.0 25.0 26.0 28.0	tl: 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0	t2: 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0	t3: 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0	re
				Intensitie operator 15.0 17.0 19.0 21.0 23.0 25.0 26.0 28.0 30.0	tl: 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0	t2: 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0	t3: 1.0 0.0 0.0 1.0 0.0 0.0 0.0 24.0 0.0	re
				►Intensitie operator 15.0 17.0 19.0 21.0 23.0 25.0 26.0 28.0 30.0 32.0	tl: 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0	t2: 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0	t3: 1.0 0.0 1.0 0.0 0.0 0.0 0.0 24.0 0.0 24.0	re
				Intensitie operator 15.0 17.0 19.0 21.0 23.0 25.0 26.0 28.0 30.0	tl: 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0	t2: 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0	t3: 1.0 0.0 0.0 1.0 0.0 0.0 0.0 24.0 0.0	Fe

	Original ideal signal	renamed signal	2 nd renamed signal
definition	Ratio of input signal to output signal	Conjunction of one or more original ideal signal	Processing of renamed signal by specific operators
aim	Obtain reliability of component	Improve calculation efficiency	Show signal dependency
generation	Functional GO-FLOW operators and customized GO-FLOW operator	Processing before type 22, 23, 24, 28, 30, 35, 40 GO-FLOW operator	Type 23, 24, 28, 40 GO- FLOW operator
Characteristic	Does not exist in final signal calculation	Independent between each other	dependent with renamed signal

Reliability Analysis – Signal processing

- 2nd renamed signal in one success path:
 signal merging: S(t_i) = min[S₁(t_i), S₂(t_i), ...]
- 2nd renamed signal in different success paths:

signal splitting: $S(t_i) = max[S_1(t_i), S_2(t_i), ...]$ $S_1(t_i) = S(t_i) * S^{(t_i)}$ Independent $S_2(t_i) = S(t_i) * S^{(t_i)}$ Signal dependent signal

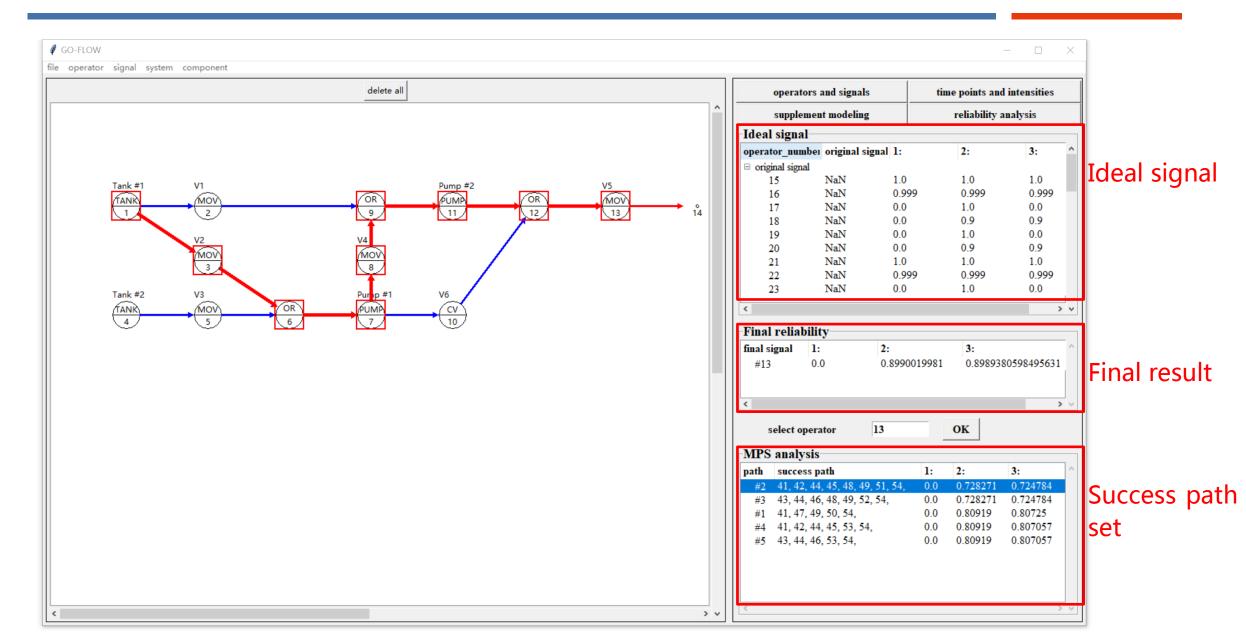
Reliability Analysis – NEA algorithm

• No repeated signal:

 $R = 1 - \prod P_i(S_1, S_2, \cdots)$

• One repeated signal:

 $R = R_{S_{i}^{1}} \cdot S_{i} + R_{S_{i}^{0}} \cdot (1 - S_{i})$ = $P(S_{1}, S_{2}, \dots, S_{i} = 1, \dots) \cdot S_{i} + P(S_{1}, S_{2}, \dots, S_{i} = 0, \dots) \cdot (1 - S_{i})$


• More than one repeated signals:

$$\begin{split} R &= R_{S_{i}^{1}} \cdot S_{i} + R_{S_{i}^{0}} \cdot (1 - S_{i}) \\ &= R_{S_{i}^{1}S_{j}^{1}} \cdot S_{i} \cdot S_{j} + R_{S_{i}^{1}S_{j}^{0}} \cdot S_{i} \cdot (1 - S_{j}) + R_{S_{i}^{0}S_{j}^{1}} \cdot (1 - S_{i}) \cdot S_{j} + R_{S_{i}^{0}S_{j}^{0}} \cdot (1 - S_{i}) \cdot (1 - S_{j}) \\ &= \cdots \end{split}$$

Reliability Analysis – Supplement modeling

GO-FLOW	signal system component			- 🗆 X
	delete all		operators and signals	time points and intensities
		Î	supplement modeling	reliability analysis
	$\begin{array}{c} Tank #1 & V1 & & & Pump #2 \\ \hline MOV & & & & & \\ \hline V & & & & \\ \hline V & & & & \\ \hline Tank #2 & V3 & & & \\ \hline TANK & & & & \\ \hline 4 & & & & \\ \hline 4 & & & & \\ \hline \end{array}$		Truncation truncation value 0 truncation value 0 truncation time point -1 CCF analysis CCUP CCF model: NO CCF select operator: beta = group operators 1 2, 3 2 4, 5, 6	CCF type beta beta 0.01 alpha 0.03

Reliability Analysis – Final result

Conclusions

- We build the table of **componentization models** which used to merge the GO-FLOW operator and map system components
- An **automated GO-FLOW modeling tool** is proposed to extract information from P&ID to GO-FLOW model data file.
- A new GO-FLOW platform is built with CCF analysis and success path analysis in addition to the original functions.
- **NEA algorithm** is used to improve the computational efficiency and accuracy of reliability analysis.

Thanks for listening!